Water Energy Matters

Issues related to the water-energy nexus


1 Comment

The widening water-energy gap in China

To meet water demands, Beijing have started melting snow. (Image courtesy of Agence France-Presse)

To meet water demands, Beijing have started melting snow. (Image courtesy of Agence France-Presse)

On a wintry morning in Beijing in 2010, two large vehicles drove around Tiananmen Square with a rather odd objective. Instead of trying to melt snow to clear the roads, these vehicles, equipped with high-powered heaters, were instead melting snow and collecting it to increase the city’s water supply. Designated snow-melting areas were spread across the city. The snow collected would be stored in dammed sections of three rivers that run through the municipality and eventually be used for road cleaning, irrigation, and to supplement river levels.

Beijing had to take these snow-melting measures to meet the demands of its rapidly-growing population: the city’s consumption of 3.55 billion cubic meters (938 billion gallons) of water in 2009 surpassed its water supply of 2.18 billion cubic meters (576 billion gallons). In 2010, Beijing’s population was 19.6 million; in 2011, it was almost 20.2 million. In one year, the city grew by 600,000 people — basically the size of Boston.

The water-energy gap
What is happening in Bejing is a microcasm of China’s growing problem of increasing energy demands and decreasing water supply. This is not unique to China. In previous posts, we have seen examples of this in the U.S., the Middle East, and Australia. However, it is particularly stunning in the case of China because it is the world’s most populous nation and has the second largest economy. Furthermore, China is the world’s driest countries.

Over the last decade alone, China’s economy created 70 million new jobs. According to the World Bank, this year, the same economy generated the world’s largest markets for cars, steel, cement, glass, housing, energy, power plants, wind turbines, solar panels, highways, high-speed rail systems, airports — the list goes on. China’s economy has increased more than eightfold since the mid-1990s and water consumption has increased more than 15 percent in that period. At the moment that China is solidifying its standing as a superpower, competition between energy and water threatens to halt its progress.

The gap is signified by a converging of three important trends which highlights the crucial relationship of the water-energy nexus: rising economic development, increasing energy demand, and water scarcity.

The gap is exacerbated by growth and climate change
China has roughly 617 billion cubic meters (163 trillion gallons) of water available for all uses. About 63 percent is for agriculture, 12 percent is for municipal and domestic use, and 23 percent for industry use.

China’s total water resource has dropped more than 13 percent since 2000, meaning it has lost 350 billion cubic meters (93 trillion gallons) of its water supply. To put this in this perspective, each year, China has lost as much water as the amount that flows through the mouth of the Mississipi River in nine months. Chinese climatologists say a lot of this is because of climate change, which is disrupting patterns of rain and snowfall.

In that same period since 2000, coal production has tripled to 3.47 billion metric tons (3.83 billion short tons) a year. National projections say that the country’s coal industry will need to produce an additional one billion metric tons of coal annually by 2020.

Freshwater needed for mining, processing, and consuming coal accounts for 80 percent of industrial water use in China; at roughly 112  billion cubic meters (30 trillion gallons) a year, coal industry consumes one-fifth of the country’s water. China’s demand for energy, particularly for coal, is outpacing its freshwater supply.

Wiki_avg annual precipitation China

Most of China’s precipitation occur in the south while the north and west are relatively dry. (Image courtesy of Wikimedia Commons)

Beijing’s dire need for water also reveals another constraint of China’s water supply, which in and of itself is not new. 80 percent of the rainfall and snowmelt (two major sources of freshwater supply) occurs in the south, while the mostly desert regions of the north and west receive 20 percent of the precipitation.

What’s new is that China’s surging economic growth is fueling a fast-expanding industrial sector. Industry uses 70 percent of the country’s energy, and more energy supplies is needed to meet the booming growth. However, unlike its water supply, China’s coal reserves (its main energy resource) are mostly found in the north. The problem, say government officials, is that there is not enough water to mine, process, and consume those reserves, and still develop the urban and manufacturing centers that China envisions for the region.

What the Chinese government is and is not doing
The national and provincial governments have been incredibly effective in enacting and enforcing a range of water conservation and efficients measures. These policies have sharply reduced waste, shifted water from agriculture to industry, and slowed the growth in national water consumption. For example, Beijing and China’s major cities are retrofitting their sewage treatment systems to recycle wastewater for use in washing clothes, flushing toilets, and other greywater applications. In short, China has been radically changing traditional approaches to water management.

Though it appears that many levels of government leadership and management clearly understand the crucial relationship between water and energy, they are focusing only on a particular aspect of the nexus. Fuqiang Yang, director of the World Wildlife Fund’s Global Climate Solutions project in Beijing, captures this mindset well: “People outside China talk about [greenhouse gas] emissions. Inside China, water is the highest priority.”

The irony is that the increasing greenhouse gas emissions coming from the fast-expanding coal industry is contributing to the water shortage problem. Emissions are the main contributor of climate change, which scientists say is responsible for disrupting patterns of and decreasing rain and snowfall in China.

Finding solutions to address freshwater shortages is important in the short term. However, most of the current efforts to mitigate water scarcity are “band-aid” solutions (melting snow, retrofitting sewage systems, rerouting water geographically, etc.), while the main cause of the issue — the the expansion of industry which demand more coal to be burned, which in turn affects climate patterns, causing less rainfall — remains largely unaddressed. For now, anyway.

The sutures won’t hold
Another way the government is trying to reduce freshwater consumption is through transitions to renewable energy sources, which require less water than fossil fuel sources. China has launched enormous new programs of solar, wind, hydro, and seawater-cooled nuclear power. However, this is not making that much of a dent on supplying current energy demands, 70% of which is supplied by coal.

The water-energy ravine is here manifested in this image as a drainage pipe at the Baorixile coal mine in Inner Mongolia. (Image courtesy of Greenpeace)

The water-energy ravine is physically manifested in this image as a pipe drains used water at the Baorixile coal mine in Inner Mongolia. (Image courtesy of Greenpeace)

Today, China consumes more than 600 billion cubic meters (159 trillion gallons) of water annually. By 2020, China, the largest producer and consumer of coal, will mine and use up to 4.5 billion metric tons (5 billion short tons) of it. Largely as a result of this, the country’s consumption of water is projected to reach 670 billion cubic meters (177 trillion gallons) annually.

China has enough coal. The globally-significant question that needs to be answered is where China will find enough water to make developing new coal reserves possible. While they help, band-aid solutions such as melting snow won’t be able to bridge the increasingly gaping ravine between energy demands and water shortages.