Water Energy Matters

Issues related to the water-energy nexus


Leave a comment

What about all these other nexuses? Nexi?

More and more, organizations are not only talking about the water-energy nexus — but the food-water-energy nexus, or the energy-water-food-climate nexus.

Academia and Research Institutions
Last year, on Earth Day, Stanford University started organizing an annual gathering that brought together many of its schools and institutes into conversation with each other. The “Connecting the Dots: The Food, Energy, Water, and Climate Nexussymposium brought together the TomKat Center for Sustainable Energy, the Center on Food Security and the Environment, the Woods Institute for the Environment, and Stanford’s School of Earth Sciences.

The 2011 “Connecting the Dots” Annual Symposium. (Video courtesy of Stanford University)

In the above video, the opening speaker explains why the interdisciplinary gathering is important: “The great global challenges of the century of providing clean and affordable enrgy, adequate food and improved nutrition, clean water for people and ecosystems, a protected and sustained environment and planetary life support system–all these are tightly linked to each other.” The speakers presented on a range of topics, including global food challenge for the 21st century, competition for biomass as both a source for food and energy, and how aquaculture is linked to food security.

As a graduate student who is familiar with the bureaucracies of higher education, I realize that it is no small feat to bring so many schools and institutions together in one room and have them talk about the intersection of all these issues. The fact that these gatherings are happening signals to me that talking about these issues in an interconnected way is important because the challenges we face are becoming more and more urgent.

International and Regional Organizations
But it’s not only academics and researchers who are recognizing this. Just this past week, the United Nations Climate Change Conference, COP18, was held in Doha, Qatar. A panel discussion called “It Never Rains in the GCC” focused on the energy-water-food-climate nexus. The panel brought together experts from international, governmental, and organizations such as World Economic Forum, Global Water Partnership, Environment Agency Abu Dhabi, New York University, and UN Food and Agriculture Organization.

The GCC is the Gulf Cooperation Council, a loose political and economic alliance of six Gulf countries: Saudia Arabia, Kuwait, the United Arab Emirates (UAE), Oman, Qatar, and Bahrain. The title of the panel refers to the fact that the Gulf region is very arid and suffers from extreme water scarcity. The area is heavily dependent on food imports and its freshwater supplies come largely from desalination processes. In response, GCC governments have announced over $100 billion of investments in desalination and water recycling by 2016, as well as over $200 billion of investments in energy efficiency and renewable and nuclear energy, following the development model launched the UAE.

afp_gulf solar

Gulf countries are undertaking massive renewable energy projects to address water-energy-climate nexus issues. UAE has emerged as a pioneer in this sector with solar initiatives. (Image courtesy of AFP)

Despite the region’s well-known oil resources, the UAE wants to substantially incorporate renewable sources to the traditional mix of fossil fuels for energy generation. The country set the region’s first renewable energy targets, which mandate over 2500 megawatts of solar, waste-to-energy, and wind projects in coming years. To address issues related to the energy-water-food-climate nexus, it has also implemented things like sustainability building and public lighting codes, air-conditioning performance, agricultural and landscaping efficiency standards to reduce energy and water consumption.

Non-Profits
In the non-profit arena, environmentally-oriented philanthropic organizations such as Grace Communications Foundations are helping consumers recognize this at the individual level. Their food-water-energy nexus home page uses a venn diagram (remember these from elementary school?) to visually highlight the intersection of these issues. They explain that “because actions related to one system can impact one or both of the other systems, it is necessary to take a nexus approach.”

grace_nexusGrace Foundations focuses on education and provides suggestions on how people, at the individual level, can reduce their impacts on the nexus. Some of these suggestions include things like installing solar photovoltaic panels in the home, buying energy-efficient appliances, using mass transit or biking, saving water (and thus energy) by taking shorter showers, eating less meat (livestock requires a lot of water), etc.

So what?
It is important to recognize that these organizations aren’t approaching the food-water-energy nexus or the water-energy-food-climate nexus (pick whichever word you’d like to come first) in the same way.

Scholars and researchers at Stanford are looking at how issues in one of these areas affect those in another and at patterns of connections at different levels, for example, how climate change will disproportionately affect vulnerable populations in developing countries. GCC governments’ responses to the nexus is mitigation- and management-oriented, with a heavy development and investment component to it. Grace Foundations provides information and educational tools to make the public more aware, and aims at helping individuals, as consumers, make small changes to decrease their impact on nexus issues.

The “a-b-c” nexus terms are becoming buzzwords. First it was “a-b” — water-energy, energy-food. Now it’s “c-a-b” — food-water-energy. And even “a-b-c-d” — water-energy-food-climate. Which word or permutation of words will get tacked on next?

Despite the fact that the “nexus” terms may be getting a bit overused, it is important to not throw the baby out with the bathwater. Meaning that it’s very significant that people from different societal sectors — academia, government, civil society — are all recognizing that these environmental issues of water, energy, food, and climate are tightly interlinked. Our environment is a delicate ecosystem of checks and balances and what happens in one of these areas have significant impacts on what happens in the others.


3 Comments

What is the government doing about this?

Inaction at the federal level
In 2005, Congress mandated a federal water and energy roadmap. The Department of Energy partially responded to the call in December 2006 with a report on the interdependency of energy and water called  “Energy Demands on Water Resources.” Yet, to date, there is still no national research program directly aimed at understanding the intimate and complex relationship between water and energy in a comprehensive way.

Growing energy demands in the arid U.S. West

The greatest increases in population growth will happen in some of the U.S.’s most water-scarce areas. (Image courtesy of National Renewable Energy Laboratory)

There is growing concern whether an appropriately-routed and affordable supply of water will exist to support the U.S.’s growing electricity demands, in particular around matching geographical water availability to energy need. For example, in the 1990’s, the largest regional population growth of 25% occurred west of the Rocky Mountains, one of the most water deficient regions in the U.S. Water consumption in the western U.S. is much higher than other regions because of farming demands. It is estimated that over one million gallons of water is needed each year to irrigate one acre of farmland in arid conditions. This means that in 2000, the majority of freshwater withdrawals (86 percent) and irrigated acres (75 percent) were in the western states.

Managing water and energy together at the state level
State lawmakers and natural resource managers have traditionally addressed water and energy as two separate issues. However, water and energy are deeply connected, so the sustainability of one requires consideration of the other. Thus, resource managers and lawmakers in many places are beginning to take a more holistic approach to the management of water and energy.

At least nine states (Arizona, California, Colorado, Connecticut, Nevada, South Dakota, Washington, West Virgina, and Wisconsin) have statutes that recognize the nexus between water and energy. A statute is legislative law. Three states in the more arid West (Arizona, California, and Nevada) have statutes that specifically refer to the use of water for electricity power generation.

Arizona’s well-known cactus-dotted landscape is an indicator of its arid climate. (Image courtesy of eHow)

In Arizona, Statute § 45-156 requires electricity facilities to request legislative authorization in order to divert water to generate over 25,000 horsepower (18,642 Megawatt-hour) of electric energy. Statute § 45-166 says that an electricity generating plant (most of which are coal-operated) can use up 34,100 acre-feet of water each year, including water used for mining, coal transportation, and ash disposal.

In California, Code § 5001 exempts individuals who extract groundwater or surface water for generating electricity from submitting a “Notice of Extraction and Diversion of Water”. In Nevada, Statute § 533.372 says the State Engineer can approve or disapprove any application of water from beneficial use to a use that generates energy that will be exported out of Nevada.

What does this mean?
In California, generating electricity is one of the few reasons that exempts individuals from notifying the state that they are diverting water and how much they’re diverting. In contrast, in Arizona and Nevada, legislation is trying to apply some limits to the amount of water that can be used for electricity generation, or at least toward electricity that leaves the state.

I suspect one of the main reasons for the contrast is resource priorities. Arizona and Nevada are two of the most arid states in the U.S.: Nevada ranks number one and Arizona fourth for the least amount of annual precipitation. Nevada’s Division of Water Resources says its mission is “to conserve, protect, manage, and enhance the state’s water resources … through the appropriation and allocation of the public waters.” Arizona’s Department of Water Resources is stronger with their intention and directly say that the state places a high priority on managing its limited water.

A San Diego convenience store without electricity during the 2011 Southwest blackout. (Image courtesy of Associated Press)

California, in contrast, does not even make the top 10 most arid states based on annual precipitation. With the California electricity crisis of 2000 and 2001 and the one more recently in 2011 fresh in memory, California officials are much more worried about managing electricity demands and do whatever is necessary to avoid perennial summer blackouts. Understandably so — the early 2000’s electricity crisis costed the state $40 to $45 billion.

Taking a much harder look
Though they exhibit a step in addressing water and energy issues together, these state-level legislation have weak influence on the impacts that conventional electricity generation has on water supply and quality. “US policy makers continue to overlook the implications of increasing water scarcity when they evaluate the use of coal and nuclear power,” says a report, “The Hidden Costs of Electricity: Comparing the Hidden Costs of Power Generation Fuels,” released in September by the Civil Society Institute.

When it comes to water impacts, the report finds that renewable energy sources have the least water impact. However, coal, nuclear, and natural gas resources have the highest hidden costs. This is worrisome since these are also the three most dominant means of producing electricity in the U.S. today.

Fracking uses large amounts of water and has contaminated ground water in many documented cases. (Image courtesy of the film Gasland)

Coal and nuclear plants use (and lose) 300-1,000 gallons of water per Megawatt-hour (MWh). However, these plants withdraw a lot more water than that for its steam heating and cooling process — anywhere from 500 to 60,000 gallons per MWh depending on the cooling system. The water that is returned to the environment is wastewater which degrades river water quality. Furthermore, the mining processes for the energy resources in these plants (coal and uranium) contaminate groundwater. For natural gas, the major water costs come from extraction processes, such as fracking and coalbed methane recovery, which require large volumes of water and contaminate ground and surface water.

Arizona is beginning to regulate how much water can be used for electricity generation. But, the water-energy nexus issue is far more complex:

  • How can we ensure the quality of water that returns to the environment after it’s used by power plants?
  • How can power plants be more water efficient so there aren’t such vast differences in the amount of water required for cooling?
  • How much water should be used for extraction and mining?
  • How can these processes be better regulated to minimize contamination effects?
  • How do we include water impacts to strengthen transitions to renewable energy sources?

All these are questions that have yet to be addressed by legislation and government management in an integrated way both at the state and national levels.


4 Comments

The need for a change in understanding

Last year, Texas experienced the worst single-year drought in recorded history. Ken Saathoff, an official with the state electric grid operator, said “we will be very concerned” if  it does not rain by spring. This seems odd at first. Why would someone who works in the electricity sector care so much about rainfall and drought?

Examples of interdependency between the water and carbon cycles. (Image courtesy of National Conference of State Legislatures)

Saathoff’s concern highlights the important relationship between two resources that has been gaining much attention (and concern) in recent years. Water and energy were once thought of and treated as separate issues. Growing population demands and resource shortages, however, underscores how much these two resources are interlinked.

Energy means a lot of things. We usually say we need to eat so we have the energy to do work. And that is what energy is fundamentally: the ability to do work. In this particular post, we’ll be talking about a specific kind of energy: electric energy. Electric energy plays an important role in almost every aspect of our lives: it lights stores, makes factories work, keeps the refrigerator cold, and powers our electronic devices.

What may not be as apparent is that electric energy also helps bring the water we use. The intersection of water and energy issues is known as the “water-energy nexus.” It points to how much energy is needed to pump, process, transfer, store, and dispose water. It also shows how much water is used to extract, generate, and transmit energy.


An overview of the process of extracting, generating, and transmitting electrical energy, and some of water’s role in the process. (Video courtesy of Energy Now!)

Most sources (including Sandia National LaboratoriesNational Conference of State Legislatures, and Circle of Blue) say that about 4% of national electricity use goes to moving and treating water. In some regions, this percentage is much higher. For example, the California Energy Commission reports water-related energy use constitute 19% of the state’s electricity and 32% of its natural gas. A large part of the issue is that where water is needed is not always where it is most abundant, requiring large amounts of energy to move water over distances.

California Aqueduct

Large, long-distance water aqueducts transport water to Southern California, requiring much energy along the way. (Photo courtesy of Wikimedia Commons.)

Generating and distributing energy also require large amounts of water. The Network for Energy Choices says that U.S. power plants use more fresh water than irrigation while Sandia National Laboratories says that agricultural water use is still the highest. Despite arguments in ranking, most organizations (including Network for Energy Choices, Sandia National Laboratories, and National Renewable Energy Lab) agree that U.S. power production requires 140 to 200 billion gallons of water daily. That’s 200,000,000,000 gallons! This accounts for almost 50% of all national freshwater withdrawals.

This means that in times of drought, when rivers or reservoirs dry up, power plants in hard-hit areas may not have enough water to operate. Water is also crucial for other parts of energy production, including energy extraction, refining and processing, and transportation. For extraction, drawing oil and natural gas from the ground with hydraulic fracturing techniques requires copious amounts of water. For refining and processing, water is needed for refining oil and gas, as well as for growing and refining biofuels. For transportation, water is needed for hydrostatic testing of energy pipelines.

Given water’s tremendous role in energy production, it is no wonder that Saathoff was closely watching the Texas skies for rainfall last September. If drought conditions continued into spring, it would have major impacts on the state electric grid.

Director of the Stockholm International Water Institute Jakob Granit says that given the scarcity of water resources, stronger regional cooperation will be important in making sure power plants are located in the best places. The implication is that power plants should be located near abundant water sources so that 1) they are not as susceptible to climate change, and 2) less energy will be used to transport water over long distances.

Granit’s sentiments also point to an increasing trend of local and regional planners who realize the importance of examining water and energy issues together. The next blog post will look at what efforts are happening at the regional, state, and federal levels to address this critical and dynamic relationship. Stay tuned!